85 research outputs found

    Trajectory Synthesis for Fisher Information Maximization

    Get PDF
    Estimation of model parameters in a dynamic system can be significantly improved with the choice of experimental trajectory. For general, nonlinear dynamic systems, finding globally "best" trajectories is typically not feasible; however, given an initial estimate of the model parameters and an initial trajectory, we present a continuous-time optimization method that produces a locally optimal trajectory for parameter estimation in the presence of measurement noise. The optimization algorithm is formulated to find system trajectories that improve a norm on the Fisher information matrix. A double-pendulum cart apparatus is used to numerically and experimentally validate this technique. In simulation, the optimized trajectory increases the minimum eigenvalue of the Fisher information matrix by three orders of magnitude compared to the initial trajectory. Experimental results show that this optimized trajectory translates to an order of magnitude improvement in the parameter estimate error in practice.Comment: 12 page

    Ti3SiC2-Cf composites by spark plasma sintering: Processing, microstructure and thermo-mechanical properties

    Get PDF
    MAX phases, and particularly Ti3SiC2, are interesting for high temperature applications. The addition of carbon fibers can be used to reduce the density and to modify the properties of the matrix. This work presents the densification and characterization of Ti3SiC2 based composites with short carbon fibers using a fast and simple fabrication approach: dry mixing and densification by Spark Plasma Sintering. Good densification level was obtained below 1400 °C even with a high amount of fibers. The reaction of the fibers with the matrix is limited thanks to the fast processing time and depends on the amount of fibers in the composite. Bending strength at room temperature, between 437 and 120 MPa, is in the range of conventional CMCs with short fibers and according to the resistance of the matrix and the presence of residual porosity. Thermo-mechanical properties of the composites up to 1500 °C are also presented.This work has received funding from the European Union’s Horizon2020 “Research and innovation programme” under grant agreement No 685594 (C3HARME

    Neopterin plasma concentrations in patients with aneurysmal subarachnoid hemorrhage: Correlation with infection and long-term outcome

    Full text link
    Š AANS, 2016. Objective Aneurysmal subarachnoid hemorrhage (aSAH) is associated with high rates of mortality and morbidity. The main predictor for the poor outcome is the World Federation of Neurosurgical Societies (WFNS) scale. However, this scale does not take into account proinflammatory events, such as infection occurring after the aSAH, which could modify the long-term status of patients. The aim of this study was to evaluate neopterin as an inflammatory biomarker for outcome and infection prediction in aSAH patients. Methods Plasma concentrations of neopterin were measured in 61 aSAH patients (22 male and 39 female; mean age [¹ SD] 52.8 ¹ 11.8 years) using a commercial ELISA kit. Samples were collected daily for 10 days. Outcome at 12 months was determined using the Glasgow Outcome Scale (GOS) and dichotomized as poor (GOS score 1, 2, or 3) or good (GOS score 4 or 5). Infection was determined by the presence of a positive bacterial culture. Results Patients with poor outcome at 12 months had higher concentrations of neopterin than patients with good outcome. In the same way, patients who had an infection during the hospitalization had significantly higher concentrations of neopterin than patients without infection (p = 0.001). Moreover, neopterin concentrations were significantly (p < 0.008) elevated in infected patients 2 days before infection detection and antibiotic therapy. Conclusions Neopterin is an efficient outcome predictor after aSAH. Furthermore, it is able to differentiate between infected and uninfected patients as early as 2 days before clinical signs of infection, facilitating earlier antibiotic therapy and better management

    Potential of heart fatty-acid binding protein, neurofilament light, interleukin-10 and S100 calcium-binding protein B in the acute diagnostics and severity assessment of traumatic brain injury

    Get PDF
    Background: There is substantial interest in blood biomarkers as fast and objective diagnostic tools for traumatic brain injury (TBI) in the acute setting. Methods: Adult patients (≥18) with TBI of any severity and indications for CT scanning and orthopaedic injury controls were prospectively recruited during 2011–2013 at Turku University Hospital, Finland. The severity of TBI was classified with GCS: GCS 13–15 was classified as mild (mTBI); GCS 9–12 as moderate (moTBI) and GCS 3–8 as severe (sTBI). Serum samples were collected within 24 hours of admission and biomarker levels analysed with high-performance kits. The ability of biomarkers to distinguish between severity of TBI and CT-positive and CT-negative patients was assessed. Results: Among 189 patients recruited, neurofilament light (NF-L) was obtained from 175 patients with TBI and 40 controls. S100 calcium-binding protein B (S100B), heart fatty-acid binding protein (H-FABP) and interleukin-10 (IL-10) were analysed for 184 patients with TBI and 39 controls. There were statistically significant differences between levels of all biomarkers between the severity classes, but none of the biomarkers distinguished patients with moTBI from patients with sTBI. Patients with mTBI discharged from the ED had lower levels of IL-10 (0.26, IQR=0.21, 0.39 pg/mL), H-FABP (4.15, IQR=2.72, 5.83 ng/mL) and NF-L (8.6, IQR=6.35, 15.98 pg/mL) compared with those admitted to the neurosurgical ward, IL-10 (0.55, IQR=0.31, 1.42 pg/mL), H-FABP (6.022, IQR=4.19, 20.72 ng/mL) and NF-L (13.95, IQR=8.33, 19.93 pg/mL). We observed higher levels of H-FABP and NF-L in older patients with mTBI. None of the biomarkers or their combinations was able to distinguish CT-positive (n=36) or CT-negative (n=58) patients with mTBI from controls. Conclusions: S100B, H-FABP, NF-L and IL-10 levels in patients with mTBI were significantly lower than in patients with moTBI and sTBI but alone or in combination, were unable to distinguish patients with mTBI from orthopaedic controls. This suggests these biomarkers cannot be used alone to diagnose mTBI in trauma patients in the acute setting. Data availability statement: Data are available on reasonable request. De-identified clinical, imaging and biochemical data not published within the article can be shared with a qualified investigator by request

    Admission Levels of Interleukin 10 and Amyloid β 1–40 Improve the Outcome Prediction Performance of the Helsinki Computed Tomography Score in Traumatic Brain Injury

    Get PDF
    BACKGROUND: Blood biomarkers may enhance outcome prediction performance of head computed tomography scores in traumatic brain injury (TBI). OBJECTIVE: To investigate whether admission levels of eight different protein biomarkers can improve the outcome prediction performance of the Helsinki computed tomography score (HCTS) without clinical covariates in TBI. MATERIALS AND METHODS: ighty-two patients with computed tomography positive TBIs were included in this study. Plasma levels of β-amyloid isoforms 1–40 (Aβ40) and 1–42 (Aβ42), glial fibrillary acidic protein, heart fatty acid-binding protein, interleukin 10 (IL-10), neurofilament light, S100 calcium-binding protein B, and total tau were measured within 24 h from admission. The patients were divided into favorable (Glasgow Outcome Scale—Extended 5–8, n = 49) and unfavorable (Glasgow Outcome Scale—Extended 1–4, n = 33) groups. The outcome was assessed 6–12 months after injury. An optimal predictive panel was investigated with the sensitivity set at 90–100%. RESULTS: The HCTS alone yielded a sensitivity of 97.0% (95% CI: 90.9–100) and specificity of 22.4% (95% CI: 10.2–32.7) and partial area under the curve of the receiver operating characteristic of 2.5% (95% CI: 1.1–4.7), in discriminating patients with favorable and unfavorable outcomes. The threshold to detect a patient with unfavorable outcome was an HCTS > 1. The three best individually performing biomarkers in outcome prediction were Aβ40, Aβ42, and neurofilament light. The optimal panel included IL-10, Aβ40, and the HCTS reaching a partial area under the curve of the receiver operating characteristic of 3.4% (95% CI: 1.7–6.2) with a sensitivity of 90.9% (95% CI: 81.8–100) and specificity of 59.2% (95% CI: 40.8–69.4). CONCLUSION: Admission plasma levels of IL-10 and Aβ40 significantly improve the prognostication ability of the HCTS after TBI

    Residual dipolar coupling investigation of a heparin tetrasaccharide confirms the limited effect of flexibility of the iduronic acid on the molecular shape of heparin

    Get PDF
    The solution conformation of a fully sulfated heparin-derived tetrasaccharide, I, was studied in the presence of a 4-fold excess of Ca2+. Proton–proton and proton–carbon residual dipolar couplings (RDCs) were measured in a neutral aligning medium. The order parameters of two rigid hexosamine rings of I were determined separately using singular value decomposition and ab initio structures of disaccharide fragments of I. The order parameters were very similar implying that a common order tensor can be used to analyze the structure of I. Using one order tensor, RDCs of both hexosamine rings were used as restraints in molecular dynamics simulations. RDCs of the inner iduronic acid were calculated for every point of the molecular dynamics trajectory. The fitting of the calculated RDCs of the two forms of the iduronic acid to the experimental values yielded a population of 1C4 and 2So conformers of iduronic acid that agreed well with the analysis based on proton–proton scalar coupling constants. The glycosidic linkage torsion angles in RDC-restrained molecular dynamics (MD) structures of I are consistent with the interglycosidic three-bond proton–carbon coupling constants. These structures also show that the shape of heparin is not affected dramatically by the conformational flexibility of the iduronic acid ring. This is in line with conclusions of previous studies based on MD simulations and the analysis of 1H-1H NOEs. Our work therefore demonstrates the effectiveness of RDCs in the conformational analysis of glycosaminoglycans

    Admission Levels of Interleukin 10 and Amyloid ß 1-40 Improve the Outcome Prediction Performance of the Helsinki Computed Tomography Score in Traumatic Brain Injury

    Get PDF
    Background: Blood biomarkers may enhance outcome prediction performance of head computed tomography scores in traumatic brain injury (TBI).Objective: To investigate whether admission levels of eight different protein biomarkers can improve the outcome prediction performance of the Helsinki computed tomography score (HCTS) without clinical covariates in TBI.Materials and methods: Eighty-two patients with computed tomography positive TBIs were included in this study. Plasma levels of β-amyloid isoforms 1–40 (Aβ40) and 1–42 (Aβ42), glial fibrillary acidic protein, heart fatty acid-binding protein, interleukin 10 (IL-10), neurofilament light, S100 calcium-binding protein B, and total tau were measured within 24 h from admission. The patients were divided into favorable (Glasgow Outcome Scale—Extended 5–8, n = 49) and unfavorable (Glasgow Outcome Scale—Extended 1–4, n = 33) groups. The outcome was assessed 6–12 months after injury. An optimal predictive panel was investigated with the sensitivity set at 90–100%.Results: The HCTS alone yielded a sensitivity of 97.0% (95% CI: 90.9–100) and specificity of 22.4% (95% CI: 10.2–32.7) and partial area under the curve of the receiver operating characteristic of 2.5% (95% CI: 1.1–4.7), in discriminating patients with favorable and unfavorable outcomes. The threshold to detect a patient with unfavorable outcome was an HCTS > 1. The three best individually performing biomarkers in outcome prediction were Aβ40, Aβ42, and neurofilament light. The optimal panel included IL-10, Aβ40, and the HCTS reaching a partial area under the curve of the receiver operating characteristic of 3.4% (95% CI: 1.7–6.2) with a sensitivity of 90.9% (95% CI: 81.8–100) and specificity of 59.2% (95% CI: 40.8–69.4).Conclusion: Admission plasma levels of IL-10 and Aβ40 significantly improve the prognostication ability of the HCTS after TBI.</p

    Determination of Conformational Equilibria in Proteins Using Residual Dipolar Couplings

    Get PDF
    In order to carry out their functions, proteins often undergo significant conformational fluctuations that enable them to interact with their partners. The accurate characterization of these motions is key in order to understand the mechanisms by which macromolecular recognition events take place. Nuclear magnetic resonance spectroscopy offers a variety of powerful methods to achieve this result. We discuss a method of using residual dipolar couplings as replica-averaged restraints in molecular dynamics simulations to determine large amplitude motions of proteins, including those involved in the conformational equilibria that are established through interconversions between different states. By applying this method to ribonuclease A, we show that it enables one to characterize the ample fluctuations in interdomain orientations expected to play an important functional role
    • …
    corecore